A Gentle Non-Disjoint Combination of Satisfiability Procedures (Extended Version)
نویسندگان
چکیده
A satisfiability problem is often expressed in a combination of theories, and a natural approach consists in solving the problem by combining the satisfiability procedures available for the component theories. This is the purpose of the combination method introduced by Nelson and Oppen. However, in its initial presentation, the Nelson-Oppen combination method requires the theories to be signature-disjoint and stably infinite (to guarantee the existence of an infinite model). The notion of gentle theory has been introduced in the last few years as one solution to go beyond the restriction of stable infiniteness, but in the case of disjoint theories. In this paper, we adapt the notion of gentle theory to the non-disjoint combination of theories sharing only unary predicates (plus constants and the equality). Like in the disjoint case, combining two theories, one of them being gentle, requires some minor assumptions on the other one. We show that major classes of theories, i.e. Löwenheim and Bernays-Schönfinkel-Ramsey, satisfy the appropriate notion of gentleness introduced for this particular non-disjoint combination framework. Key-words: Satisfiability problem, combination method, union of non-disjoint theories ∗ Universidad de Buenos Aires, Argentina † INRIA & LORIA, Nancy, France ‡ INRIA, Université de Lorraine & LORIA, Nancy, France § This work has been partially supported by the project ANR-13-IS02-0001-01 of the Agence Nationale de la Recherche, by the European Union Seventh Framework Programme under grant agreement no. 295261 (MEALS), and by the STIC AmSud MISMT Une douce et non-disjointe combinaison de procédures de satisfiabilité Résumé : Un problème de satisfiabilité est souvent exprimé dans un mélange de théories, et une approche naturelle consiste à résoudre le problème en combinant les procédures de satisfiabilité disponibles dans les théories composantes. C’est l’objet de la méthode de combinaison introduite par Nelson et Oppen. Toutefois, dans sa présentation initiale, la méthode de combinaison de Nelson-Oppen impose aux théories d’être à signatures disjointes et stablement infinies (pour garantir l’existence d’un modèle infini). La notion de théorie douce a été introduite ces dernières années comme une solution pour relacher la contrainte de stable infinité, mais uniquement dans le cas de théories disjointes. Dans ce papier, nous adaptons la notion de théorie douce à la combinaison non-disjointe de théories partageant les prédicats unaires (plus les constantes et l’égalité). Comme dans le cas disjoint, combiner deux théories, l’une d’elles étant douce, nécessite des hypothèses mineures sur l’autre théorie. On montre que les théories de Löwenheim et les théories de Bernays-Schönfinkel-Ramsey sont douces au sens introduit dans ce cadre particulier de combinaison non-disjointe. Mots-clés : Problème de satisfiabilité, méthode de combinaison, mélange de théories nondisjointes A Gentle Non-Disjoint Combination of Satisfiability Procedures 3
منابع مشابه
A Gentle Non-disjoint Combination of Satisfiability Procedures
A satisfiability problem is often expressed in a combination of theories, and a natural approach consists in solving the problem by combining the satisfiability procedures available for the component theories. This is the purpose of the combination method introduced by Nelson and Oppen. However, in its initial presentation, the Nelson-Oppen combination method requires the theories to be signatu...
متن کاملSatisfiability Procedures for Combination of Theories Sharing Integer Offsets
We present a novel technique to combine satisfiability procedures for theories that model some data-structures and that share the integer offsets. This procedure extends the Nelson-Oppen approach to a family of non-disjoint theories that have practical interest in verification. The result is derived by showing that the considered theories satisfy the hypotheses of a general result on non-disjoi...
متن کاملFrom Non-Disjoint Combination to Satisfiability and Model-Checking of Infinite State Systems
(Joint work also with S. Ranise and D. Zucchelli).In the first part of our contribution, we review recent results on combined constraint satisfiability for first order theories in the non-disjoint signatures case: this is done mainly in view of the applications to temporal satisfiability and model-checking covered by the second part of our talk, but we also illustrate in more detail some case-s...
متن کاملDecidability and Undecidability Results for Nelson-Oppen and Rewrite-Based Decision Procedures
In the context of combinations of theories with disjoint signatures, we classify the component theories according to the decidability of constraint satisfiability problems in arbitrary and in infinite models, respectively. We exhibit a theory T1 such that satisfiability is decidable, but satisfiability in infinite models is undecidable. It follows that satisfiability in T1 ∪ T2 is undecidable, ...
متن کاملSatisfiability Modulo Non-Disjoint Combinations of Theories Connected via Bridging Functions
Solving the satisfiability problem modulo a theory given as a union of decidable sub-theories naturally calls for combination methods. The Nelson-Oppen combination method [11] has been developed more than 30 years ago, and is now ubiquitous in SMT (Satisfiability Modulo Theories) solvers. However, this technique imposes strong assumptions on the theories in the combination; in the classical sch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014